Research Progress on Failure Mechanisms and Assessment Methods of Typical Airborne Electronic Equipment under Corrosion and Electromagnetic Coupling

YU Dazhao, GAO Aiguo, HUANG Hexiang, LI Yanan

Equipment Environmental Engineering ›› 2025, Vol. 22 ›› Issue (11) : 31-48.

PDF(719 KB)
PDF(719 KB)
Equipment Environmental Engineering ›› 2025, Vol. 22 ›› Issue (11) : 31-48. DOI: 10.7643/ issn.1672-9242.2025.11.004
Aviation and Aerospace Equipment

Research Progress on Failure Mechanisms and Assessment Methods of Typical Airborne Electronic Equipment under Corrosion and Electromagnetic Coupling

  • YU Dazhao, GAO Aiguo, HUANG Hexiang, LI Yanan
Author information +
History +

Abstract

The work aims to investigate the failure mechanisms and environmental worthiness assessment of typical airborne electronic equipment under the coupling of marine climatic environments and complex electromagnetic environments. First, the corrosion failure behavior and mechanisms of typical electronic equipment in marine climatic environments were systematically analyzed, revealing key corrosion mechanisms such as atmospheric corrosion, galvanic corrosion, and pitting corrosion. Next, the impact mechanism of complex electromagnetic environments on typical electronic equipment was examined in depth, focusing on the coupling paths of electromagnetic pulses acting on electronic equipment. Meanwhile, the impact of the interaction between corrosion and electromagnetism on the performance of electronic equipment was elucidated, clarifying that electromagnetic fields could either accelerate or inhibit metal corrosion; conversely and the corrosion altered the electromagnetic properties of electronic equipment, leading to reduced electromagnetic protection performance. In addition, the complex environmental worthiness assessment methods for electronic equipment based on statistical analysis and artificial intelligence-driven approaches were summarized. These findings provide theoretical support for corrosion control, electromagnetic protection, and environmental worthiness assessment of electronic equipment. Finally, outstanding issues and future research directions are outlined.

Key words

airborne electronic equipment / metal corrosion / failure mechanism / shielding effectiveness / electromagnetic interference / coupling paths / complex environment worthiness assessment

Cite this article

Download Citations
YU Dazhao, GAO Aiguo, HUANG Hexiang, LI Yanan. Research Progress on Failure Mechanisms and Assessment Methods of Typical Airborne Electronic Equipment under Corrosion and Electromagnetic Coupling[J]. Equipment Environmental Engineering. 2025, 22(11): 31-48 https://doi.org/10.7643/ issn.1672-9242.2025.11.004

References

[1] 郁大照, 张代国, 王琳, 等. 南海海洋环境下机载电子设备的腐蚀及外场防护对策[J]. 装备环境工程, 2019, 16(7): 8-12.
YU D Z, ZHANG D G, WANG L, et al.Corrosion of Airborne Electronic Equipment and Field Protection Measures in Marine Environment of South China Sea[J]. Equipment Environmental Engineering, 2019, 16(7): 8-12.
[2] TIAN H Y, CUI Z Y, ZHANG B, et al.Atmospheric Corrosion and Mechanical Property Degradation of 2524-T3 Aluminum Alloy in Marine Environments[J]. Corrosion Science, 2024, 239: 112398.
[3] 苏东林, 蔡少雄. 电磁博弈背景下加强电磁环境适应性试验鉴定的若干思考[J]. 国防科技, 2023, 44(3): 1-6.
SU D L, CAI S X.Invited paper: Remarks on Strengthening Electromagnetic Environment Adaptability Testing and Assessment in the Context of Electromagnetic Warfare[J]. National Defense Technology, 2023, 44(3): 1-6.
[4] 刘尚合, 马贵蕾, 满梦华, 等. 电磁防护仿生研究进展[J]. 高电压技术, 2022, 48(5): 1750-1762.
LIU S H, MA G L, MAN M H, et al.Research Progress of Electromagnetic Protection Biomimetics[J]. High Voltage Engineering, 2022, 48(5): 1750-1762.
[5] ZHOU C L, ZHAN Z, QIN X B, et al.Research on the Electromagnetic Environment Effect on Wireless Communication Systems[C]//Proceedings of 2008 8th International Symposium on Antennas, Propagation and EM Theory. Kunming: IEEE, 2008.
[6] GIRI D V, HOAD R, SABATH F.Implications of High-Power Electromagnetic (HPEM) Environments on Electronics[J]. IEEE Electromagnetic Compatibility Magazine, 2020, 9(2): 37-44.
[7] ZHANG J, ZHANG D, FAN Y W, et al.Progress in Narrowband High-Power Microwave Sources[J]. Physics of Plasmas, 2020, 27(1): 010501.
[8] LI Q W, CAO W, DING J, et al.Research on High-Power Electromagnetic Effect and Protective Technology of Electronic Equipments[C]//Proceedings of 2022 IEEE 9th International Symposium on Microwave, Antenna, Propagation and EMC Technologies for Wireless Communications (MAPE). Chengdu: IEEE, 2022.
[9] LIU Q F, ZHENG S Q, ZUO Y, et al.Electromagnetic Environment Effects and Protection of Complex Electronic Information Systems[C]//Proceedings of 2020 IEEE MTT-S International Conference on Numerical Electromagnetic and Multiphysics Modeling and Optimization (NEMO). Hangzhou: IEEE, 2020.
[10] LIN J C, ZHAO G.A Coupling Path Analysis Method for High Power Microwave Interaction with Electronic Systems[J]. IEEE Letters on Electromagnetic Compatibility Practice and Applications, 2021, 3(1): 7-10.
[11] LIU T, XU L, LI Q W, et al.Joint Analysis of Front-Door and Back-Door Couplings of PIN Limiter Based on Improved Equivalent Circuit Model[J]. Electronics, 2022, 11(23): 3921.
[12] PARFENOV Y V, CHEPELEV V M, RADASKY W A.About the Possibility of Mistakes when Using Unipolar Electric Field Pulses when Assessing Electronic Device Immunity to UWB Pulses[C]//Proceedings of 2018 IEEE International Symposium on Electromagnetic Compatibility and 2018 IEEE Asia-Pacific Symposium on Electromagnetic Compatibility (EMC/APEMC). Suntec City: IEEE, 2018.
[13] YAO G, WANG P K, YANG Y, et al.Multi-Scale Interrogation of Magnetic Field-Dependent Corrosion Mechanism in Q355B Steel by Experimental-Computational Coupled Framework[J]. Case Studies in Construction Materials, 2025, 22: e04775.
[14] YU X Y, WANG Z H, LU Z H.In Situ Investigation of Atmospheric Corrosion Behavior of Copper under Thin Electrolyte Layer and Static Magnetic Field[J]. Microelectronics Reliability, 2020, 108: 113630.
[15] YU X Y, WANG Z H, LU Z H.Atmospheric Corrosion Behavior of Copper under Static Magnetic Field Environment[J]. Materials Letters, 2020, 266: 127472.
[16] ZHANG X, MEI W, HUANG L P, et al.Galvanic Corrosion Behavior of 5083 Alloy/H62 Brass Couple under Magnetic Field[J]. Journal of Materials Research and Technology, 2023, 22: 192-205.
[17] ZHANG P, ZHU Q, SU Q, et al.Corrosion Behavior of T2 Copper in 3.5% Sodium Chloride Solution Treated by Rotating Electromagnetic Field[J]. Transactions of Nonferrous Metals Society of China, 2016, 26(5): 1439-1446.
[18] HUANG H L, PAN Z Q, GUO X P, et al.Effect of an Alternating Electric Field on the Atmospheric Corrosion Behaviour of Copper under a Thin Electrolyte Layer[J]. Corrosion Science, 2013, 75: 100-105.
[19] HUANG H L, PAN Z Q, GUO X P, et al.Effects of Direct Current Electric Field on Corrosion Behaviour of Copper, Cl- Ion Migration Behaviour and Dendrites Growth under Thin Electrolyte Layer[J]. Transactions of Nonferrous Metals Society of China, 2014, 24(1): 285-291.
[20] ZHANG X, ZHANG J X, DAI N W, et al.Probing the Corrosion Mechanism of Zinc under Direct Current Electric Field[J]. Materials Chemistry and Physics, 2018, 206: 232-242.
[21] HUANG H L, TIAN J.Effects of Electric Field and Bias Voltage on Corrosion Behavior of Tin under a Thin Electrolyte Layer[J]. Microelectronics Reliability, 2017, 78: 131-142.
[22] YI P, YANG Z, WANG W D, et al.In Situ Study the Effects of Bias and Electric Field Intensity on Electrochemical Migration Behavior of Sn96.5Ag3.0Cu0.5 Solder Alloy[J]. Journal of Materials Research and Technology, 2023, 27: 5607-5614.
[23] BAI J J, LI X L, ZHOU J S, et al.Integrated Prediction of Condensation-Corrosion-Shielding Effectiveness of Metal Box with Gaps by Simulations[J]. Progress in Electromagnetics Research C, 2024, 144: 137-145.
[24] ZHANG G, HE X, WANG L X, et al.The Effect of Corrosion on the Shielding Effectiveness of Electrical Connectors[C]//2022 Asia-Pacific International Symposium on Electromagnetic Compatibility (APEMC). Beijing: IEEE, 2022.
[25] XIE J S, PECHT M G, DAS S K, et al.Corrosion of a Zinc-Coated Steel Enclosure at the Contact Interfaces of Gasket Joints[J]. IEEE Transactions on Components and Packaging Technologies, 2000, 23(1): 136-142.
[26] ZHU M, LI M, ZHANG G, et al.Corrosion Mechanism to Examine the Effects of Electromagnetic Shielding Effectiveness of Airborne Equipment[C]//The Proceedings of the 19th Annual Conference of China Electrotechnical Society. Singapore: Springer Nature Singapore, 2025.
[27] AMBAT R.A Review of Corrosion and Environmental Effects on Electronics[D]. Copenhagen: The Technical University of Denmark, 2006.
[28] LANG F Y, ZHOU Z R, LIU J, et al.Review on the Impact of Marine Environment on the Reliability of Electronic Packaging Materials[J]. Frontiers in Materials, 2025, 12: 1584349.
[29] YANG X Q, JIN H F, JIA D F, et al.Corrosion Behavior of Copper Foil on PCB Substrates under Atmospheric Environment in Sichuan-Tibet Region of China[J]. Materials, 2024, 17(24): 6039.
[30] WANG L T, GAO X, ZHANG H, et al.The Corrosion Mechanism of Printed Circuit Boards Affected by Haze Atmospheric Particles[J]. RSC Advances, 2025, 15(35): 28439-28451.
[31] RUIZ-GARCIA A, ESQUIVEL-PEÑA D V, GODÍNEZ D F A, et al. Corrosion Modeling of Aluminum Alloys: A Brief Review[J]. ChemElectroChem, 2024, 11(9): e202300712.
[32] IKEUBA A I, NJOKU C N, EKERENAM O O, et al.A Review of the Electrochemical and Galvanic Corrosion Behavior of Important Intermetallic Compounds in the Context of Aluminum Alloys[J]. RSC Advances, 2024, 14(43): 31921-31953.
[33] YOO Y R, KIM Y S.Effects of Pd Alloying and Coating on the Galvanic Corrosion between Cu Wire and Bond Pads for a Semiconductor Packaging[J]. Coatings, 2024, 14(5): 544.
[34] WU S, LIU C, ZHOU K, et al.Corrosion Behavior of 2A12 and 5A02 Aluminum Alloy in Typical Marine Atmosphere Environment[J]. Journal of Materials Research and Technology, 2025, 36: 9403-9412.
[35] ZHAO Q Y, ZHAO J B, CHENG X Q, et al.Galvanic Corrosion of the Anodized 7050 Aluminum Alloy Coupled with the Low Hydrogen Embrittlement CdTi Plated 300M Steel in an Industrial-Marine Atmospheric Environment[J]. Surface and Coatings Technology, 2020, 382: 125171.
[36] YOO Y R, KIM G, JEON S M, et al.Influence of HCl Concentration on Corrosion Behavior between Au or Cu Bonding Wires and the Bond Pad for Semiconductor Packaging[J]. Materials, 2023, 16(23): 7275.
[37] HE W X, FENG Y, WU S L, et al.Numerical Simulation on the Effect of Current Intensity on Electrical Contact Performance of Electrical Connectors Subject to Micro-Slip Wear[J]. Wear, 2024, 542: 205270.
[38] FENG C, LIN X X, HU J X, et al.Study on the Influence of Fretting Wear on Electrical Performance of SMA Connector[J]. Microelectronics Reliability, 2021, 118: 114047.
[39] LEI X, FENG C, LV W S, et al.Electrical Contact Reliability Investigation of High-Speed Electrical Connectors under Fretting Wear Behavior[J]. Microelectronics Reliability, 2024, 162: 115510.
[40] HUANG H L, GUO X P, ZHANG G A, et al.Effect of Direct Current Electric Field on Atmospheric Corrosion Behavior of Copper under Thin Electrolyte Layer[J]. Corrosion Science, 2011, 53(10): 3446-3449.
[41] DA SILVA R M P, IZQUIERDO J, MILAGRE M X, et al. On the Local Corrosion Behavior of Coupled Welded Zones of the 2098-T351 Al-Cu-Li Alloy Produced by Friction Stir Welding (FSW): An Amperometric and Potentiometric Microelectrochemical Investigation[J]. Electrochimica Acta, 2021, 373: 137910.
[42] SANTANA J J, GONZÁLEZ-GUZMÁN J, IZQUIERDO J, et al. Sensing Electrochemical Activity in Polymer-Coated Metals during the Early Stages of Coating Degradation by Means of the Scanning Vibrating Electrode Technique[J]. Corrosion Science, 2010, 52(12): 3924-3931.
[43] TAN Y J.Understanding the Effects of Electrode Inhomogeneity and Electrochemical Heterogeneity on Pitting Corrosion Initiation on Bare Electrode Surfaces[J]. Corrosion Science, 2011, 53(5): 1845-1864.
[44] WANG J R, BAI Z H, XIAO K, et al.Effect of Static Magnetic Field on Mold Corrosion of Printed Circuit Boards[J]. Bioelectrochemistry, 2020, 131: 107394.
[45] CAMPESTRINI P, VAN WESTING E P M, VAN ROOIJEN H W, et al. Relation between Microstructural Aspects of AA2024 and Its Corrosion Behaviour Investigated Using AFM Scanning Potential Technique[J]. Corrosion Science, 2000, 42(11): 1853-1861.
[46] CAI Z C, PENG J, FANG J S, et al.Effect of Magnetic Field Characteristics on Dynamic Stray Current Corrosion Behavior of U75V Steel[J]. Construction and Building Materials, 2025, 472: 140810.
[47] LI W C, LIU K N, WU J S, et al.Numerical Simulation of Carbon Steel Atmospheric Corrosion under Varying Electrolyte-Film Thickness and Corrosion Product Porosity[J]. NPJ Materials Degradation, 2023, 7: 3.
[48] KAMRUNNAHAR M, URQUIDI-MACDONALD M.Prediction of Corrosion Behavior Using Neural Network as a Data Mining Tool[J]. Corrosion Science, 2010, 52(3): 669-677.
[49] HARIS N I N, SOBRI S, YUSOF Y A, et al. An Overview of Molecular Dynamic Simulation for Corrosion Inhibition of Ferrous Metals[J]. Metals, 2021, 11(1): 46.
[50] HUANG L F, SCULLY J R, RONDINELLI J M.Modeling Corrosion with First-Principles Electrochemical Phase Diagrams[J]. Annual Review of Materials Research, 2019, 49: 53-77.
[51] MA H, WU L P, LIU C, et al.First-Principles Modeling of the Hydrogen Evolution Reaction and Its Application in Electrochemical Corrosion of Mg[J]. Acta Materialia, 2020, 183: 377-389.
[52] LIU C, KELLY R G.A Review of the Application of Finite Element Method (FEM) to Localized Corrosion Modeling[J]. Corrosion, 2019, 75(11): 1285-1299.
[53] XU L Y, CHENG Y F.Development of a Finite Element Model for Simulation and Prediction of Mechanoelectrochemical Effect of Pipeline Corrosion[J]. Corrosion Science, 2013, 73: 150-160.
[54] ONISHI Y, TAKIYASU J, AMAYA K, et al.Numerical Method for Time-Dependent Localized Corrosion Analysis with Moving Boundaries by Combining the Finite Volume Method and Voxel Method[J]. Corrosion Science, 2012, 63: 210-224.
[55] TEIXEIRA F L, SARRIS C, ZHANG Y, et al.Finite- Difference Time-Domain Methods[J]. Nature Reviews Methods Primers, 2023, 3: 75.
[56] OSKOOI A F, ROUNDY D, IBANESCU M, et al.Meep: A Flexible Free-Software Package for Electromagnetic Simulations by the FDTD Method[J]. Computer Physics Communications, 2010, 181(3): 687-702.
[57] YEE K E.Numerical Solution of Initial Boundary Value Problems Involving Maxwell’s Equations in Isotropic Media[J]. IEEE Transactions on Antennas and Propagation, 1966, 14(3): 302-307.
[58] WANG X T, SHI Y W, ZHOU Y F, et al.A Stochastic FDTD Method for the Analyses of Geometrical and Media Uncertainties Based on the Conditional Probability[J]. IEEE Transactions on Electromagnetic Compatibility, 2024, 66(1): 189-194.
[59] ZHAO S H, WEI B, HE X B, et al.Hybrid FDTD Algorithm for Electromagnetic Analysis of Fine Structures[J]. Results in Physics, 2021, 31: 105017.
[60] WANG J X, REN Q.A 3-D Hybrid Maxwell’s Equations Finite-Difference Time-Domain (ME-FDTD)/Wave Equation Finite-Element Time-Domain (WE-FETD) Method[J]. IEEE Transactions on Antennas and Propagation, 2023, 71(6): 5212-5220.
[61] DENG L R, WANG Y H, TIAN C Y, et al.A Symmetric FDTD Subgridding Method with Guaranteed Stability and Arbitrary Grid Ratio[J]. IEEE Transactions on Antennas and Propagation, 2023, 71(12): 9207-9221.
[62] SUN Z L, DONG W, QIN D Y, et al.Approximate Simulation of Low Frequency Magnetic Shielding of a Rectangular Shielding Box with all Walls Perforated Periodical Holes[J]. Progress in Electromagnetics Research Letters, 2023, 109: 31-39.
[63] HAO J H, JIANG L H, GONG Y F, et al.Study of the Shielding Effectiveness of Double Rectangular Enclosures With Apertures Excited by an Internal Source[J]. Progress In Electromagnetics Research M, 2016, 47: 67-76.
[64] HU P Y, SUN X Y.Study of the Calculation Method of Shielding Effectiveness of Rectangle Enclosure with an Electrically Large Aperture[J]. Progress in Electromagnetics Research M, 2017, 61: 85-96.
[65] ROBINSON M P, TURNER J D, THOMAS D W P, et al. Shielding Effectiveness of a Rectangular Enclosurewith a Rectangular Aperture[J]. Electronics Letters, 1996, 32(17): 1559-1560.
[66] RABAT A, BONNET P, EL KHAMLICHI DRISSI K, et al. Analytical Models for Electromagnetic Coupling of an Open Metallic Shield Containing a Loaded Wire[J]. IEEE Transactions on Electromagnetic Compatibility, 2017, 59(5): 1634-1637.
[67] SHEN S C, WANG Y, XING P S.The Prediction of Shielding Effectiveness of the Rectangular Enclosure with Complex Apertures Based on the BLT Equation[J]. IEICE Electronics Express, 2025, 22(10): 20250159.
[68] SUN J, GONG Y F, JIANG L H.An Improved Model for the Analysis of the Shielding Performance of an Apertured Enclosure Based on EMT Theory and BLT Equation[J]. Journal of Electromagnetic Waves and Applications, 2022, 36(2): 246-260.
[69] ZHENG X Q, HUANG Z Y, LIANG Y Q, et al.Rapid Calculation Method of Ultrathin Dielectric Layer Shielding Efficiency Based on CNTD-FDTD Method[C]//2024 IEEE International Conference on Computational Electromagnetics (ICCEM). Nanjing: IEEE, 2024.
[70] RADHAKRISHNAN P, KORAQI L, CLAEYS T, et al.FDTD Simulation and Experimental Comparative Study of a Gasket’s Shielding Effectiveness Characterization: Dipole Vs. Log-Periodic Antenna[J]. IEEE Transactions on Electromagnetic Compatibility, 2025, 67(2): 598-608.
[71] CHEN M, HE X B, WEI X P, et al.An Efficient FDTD Algorithm for Calculating Low-Frequency Transmission Characteristics of Multilayer Metal Meshes[J]. IEEE Transactions on Antennas and Propagation, 2024, 72(6): 5141-5147.
[72] DIMITRIJEVIĆ T, ATANASKOVIĆ A, JOKOVIĆ J, et al.TLM Modelling of the Cylindrical Enclosure Shielding Effectiveness[C]//2024 11th International Conference on Electrical, Electronic and Computing Engineering (IcETRAN). Nis: IEEE, 2024.
[73] MEDJAOURI Y A, BENZAOUI K, ALES A, et al.Equivalent Modeling of Multilayered Conductive Composite Materials for EMI Shielding Applications[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2025, 32(4): 1923-1929.
[74] SUN X G, WEI B.Analysis of Shielding Effectiveness of Multi-Layer Steel Cages under High-Altitude Nuclear Explosion[C]//2021 13th International Symposium on Antennas, Propagation and EM Theory (ISAPE). Zhuhai: IEEE, 2021.
[75] KALANTARI M, SADEGHI S H H. An Efficient Method for Computing the Shielding Effectiveness of Arbitrary-Shape Multilayered Composite Enclosures[J]. IEEE Transactions on Electromagnetic Compatibility, 2024, 66(2): 444-452.
[76] YIN M C, DU P G.An Improved Circuit Model for the Prediction of the Shielding Effectiveness and Resonances of an Enclosure with Apertures[J]. IEEE Transactions on Electromagnetic Compatibility, 2016, 58(2): 448-456.
[77] DEHKHODA P, TAVAKOLI A, MOINI R.An Efficient and Reliable Shielding Effectiveness Evaluation of a Rectangular Enclosure with Numerous Apertures[J]. IEEE Transactions on Electromagnetic Compatibility, 2008, 50(1): 208-212.
[78] NIE B L, DU P G, XIAO P.An Improved Circuital Method for the Prediction of Shielding Effectiveness of an Enclosure with Apertures Excited by a Plane Wave[J]. IEEE Transactions on Electromagnetic Compatibility, 2018, 60(5): 1376-1383.
[79] GONG Y F, LI Y J, JIANG L H.Efficient Analytical Method for the Shielding Effectiveness of an Apertured Enclosure Based on the BLT Equation[J]. IET Science, Measurement & Technology, 2020, 14(8): 897-904.
[80] SHEN W, WANG S, LI W, et al.An Extended Hybrid Analytical Model for Shielding Effectiveness Prediction of multi-Cavity Structure with Numerous Apertures[J]. Progress in Electromagnetics Research M, 2020, 96: 181-190.
[81] JIN H, ZHANG H L, MA Y R, et al.An Analytical Hybrid Model for the Shielding Effectiveness Evaluation of a Dual-Cavity Structure with an Aperture Array[J]. Progress in Electromagnetics Research Letters, 2020, 91: 109-116.
[82] GONG Y F, HAO J H, JIANG L H, et al.A Hybrid Model for Electromagnetic Leakage from an Apetured Complex Metallic Enclosures[J]. Progress in Electromagnetics Research B, 2017, 74: 123-139.
[83] REN J J, PAN Y H, ZHOU Z Y, et al.Research on Testing Method for Shielding Effectiveness of Irregular Cavity Based on Field Distribution Characteristics[J]. Electronics, 2023, 12(4): 1035.
[84] CHEN K, JIN H, ZHANG H, et al.A Hybrid Analytical Model for Estimating the Shielding Effectiveness of an Irregular Cavity Structure with Aperture Arrays[J]. IET Conference Proceedings, 2022, 2021(15): 949-954.
[85] ZHENG Z H, TANG M, MAO J F.Efficient Terminal Response Simulation of Shielded Cable Excited by an Electromagnetic Plane Wave[C]//2024 IEEE Joint International Symposium on Electromagnetic Compatibility, Signal & Power Integrity: EMC Japan/Asia-Pacific International Symposium on Electromagnetic Compatibility (EMC Japan/APEMC Okinawa). Ginowan: IEEE, 2024.
[86] ŠTUMPF M, LAGER I E, ANTONINI G.Time-Domain Analysis of Thin-Wire Structures Based on the Cagniard- DeHoop Method of Moments[J]. IEEE Transactions on Antennas and Propagation, 2022, 70(6): 4655-4662.
[87] LIANG T, XIE Y Z.Analytical Electromagnetic Field Coupling to Transmission Line Model Exploiting the Reciprocity Theorem[J]. IEEE Transactions on Magnetics, 2022, 58(2): 7000204.
[88] ZHAI X Y, XIE H Y, QIAO H L, et al.A Full-Wave- Transmission-Line Hybrid Method for Vertically Laid Shielded Cable Illuminated by HEMP[J]. IEEE Transactions on Electromagnetic Compatibility, 2023, 65(5): 1501-1508.
[89] ZHAI X Y, XIE H Y, QIAO H L, et al.Numerical Study on Effective Coupling Length of Vertical Shielded Cable Illuminated by HEMP[J]. IEEE Transactions on Power Delivery, 2025, 40(4): 1997-2004.
[90] HAMDALLA M Z M, CARUSO A N, HASSAN A M. Electromagnetic Compatibility Analysis of Quadcopter UAVs Using the Equivalent Circuit Approach[J]. IEEE Open Journal of Antennas and Propagation, 2022, 3: 1090-1101.
[91] HU X, QIU Y, XU Q L, et al.A Hybrid FDTD-SPICE Method for Predicting the Coupling Response of Wireless Communication System[J]. IEEE Transactions on Electromagnetic Compatibility, 2021, 63(5): 1530-1541.
[92] HU X, QIU Y, XU Q L, et al.An Efficient Hybrid Method for Analyzing the Coupling Response of Microstrip Antenna System[J]. International Journal of Applied Electromagnetics and Mechanics, 2021, 67(2): 223-236.
[93] GUO L S, LI M K, XU S H, et al.Electromagnetic Modeling Using an FDTD-Equivalent Recurrent Convolution Neural Network: Accurate Computing on a Deep Learning Framework[J]. IEEE Antennas and Propagation Magazine, 2023, 65(1): 93-102.
[94] XIE H Y, LIU Y, LI Y, et al.A Prediction Model Based on Artificial Neural Network for E1 HEMP Coupling with Distribution Power Lines[J]. IEEE Transactions on Power Delivery, 2022, 37(6): 5337-5344.
[95] BAI P W, WANG S, ZHAO B, et al.Electrically Conductive and Corrosion Resistant MAX Phases with Superior Electromagnetic Wave Shielding Performance[J]. Journal of the European Ceramic Society, 2022, 42(16): 7414-7420.
[96] MARUTHI N, FAISAL M, RAGHAVENDRA N, et al.Promising EMI Shielding Effectiveness and Anticorrosive Properties of PANI-Nb2O5 Nanocomposites: Multifunctional Approach[J]. Synthetic Metals, 2021, 275: 116744.
[97] ZHANG G Z, QIN S Y, YAN L G, et al.Simultaneous Improvement of Electromagnetic Shielding Effectiveness and Corrosion Resistance in Magnesium Alloys by Electropulsing[J]. Materials Characterization, 2021, 174: 111042.
[98] ZHANG G, SHI Y, HE X, et al.The Effect of Corrosion on the Electrical Contact Performance of Aviation Connectors Revealed by in Situ Impedance Measurements[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2025, 15(1): 140-149.
[99] WANG Z R, GAO J C, LV Y H, et al.Effect of Corrosion on the EMC Characteristics of Cable Connector Assembly[C]//2017 IEEE 5th International Symposium on Electromagnetic Compatibility (EMC-Beijing). Beijing: IEEE, 2017.
[100] JI R, GAO J C, FLOWERS G T, et al.The Effect of Electrical Connector Degradation on High-Frequency Signal Transmission[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2017, 7(7): 1163-1172.
[101] BHUVANESWARI S, SALIL P, MANIVANNAN S.Study on Shielding Effectiveness of Electronic Enclosures with Connected Accessories under Corrosive Environment for Automobile Industry[C]//2017 Progress in Electromagnetics Research Symposium-Fall (PIERS-FALL). Singapore: IEEE, 2017.
[102] 盛明杰. 含有导电橡胶机箱的屏蔽效能仿真和测试关键技术研究[D]. 南京: 东南大学, 2023.
SHENG M J.Research on Key Technologies of Shielding Effectiveness Simulation and Testing of Enclosure with Conductive Rubber[D]. Nanjing: Southeast University, 2023.
[103] ZHANG G, HE X, WANG L X, et al.Equivalent Simulation Approach for the Shielding Effectiveness of Enclosures with Gasketed Seams[J]. IEEE Transactions on Electromagnetic Compatibility, 2025, 67(3): 884-893.
[104] SJÖGREN L, BÄCKSTRÖM M. Ageing of Shielding Joints Shielding Performance and Corrosion[C]//16th International Zurich Symposium and Technical Exposition on Electromagnetic Compatibility. Zurich: IEEE, 2005.
[105] TSYANENKA D, ARLOU Y, SINKEVICH E.Worst- Case Model for Considering Gaskets in Calculation of Shielding Effectiveness of Metallic Enclosures[C]//2018 International Symposium on Electromagnetic Compatibility (EMC EUROPE). Amsterdam: IEEE, 2018.
[106] POUHÈ D, TCHEG P.Study on Corrosion-Induced Shielding-Degradation of EMI Gaskets[J]. IEEE Transactions on Electromagnetic Compatibility, 2016, 58(4): 1052-1059.
[107] PISSOORT D, CATRYSSE J, CLAEYS T, et al.Towards a Stripline Setup to Characterise the Effects of Corrosion and Ageing on the Shielding Effectiveness of EMI Gaskets[C]//2015 IEEE International Symposium on Electromagnetic Compatibility (EMC). Dresden: IEEE, 2015.
[108] CLAEYS T, CATRYSSE J, PISSOORT D, et al.Stripline Set-up for Characterizing the Effect of Corrosion and Ageing on the Shielding Effectiveness of EMI Gaskets with Improved Repeatability[C]//2018 International Symposium on Electromagnetic Compatibility (EMC EUROPE). Amsterdam: IEEE, 2018.
[109] XU M X, ZHU M, WANG M Z, et al.Research on the Equivalent Simulation Method of Shielding Effectiveness Based on Transfer Impedance[C]//2023 IEEE 18th Conference on Industrial Electronics and Applications (ICIEA). Ningbo: IEEE, 2023.
[110] CHEN Y, ZHU M, MU X L, et al.Experimental Study on EMI Gasket Shielding Performance Degradation under Corrosion Conditions[C]//2023 IEEE 18th Conference on Industrial Electronics and Applications (ICIEA). Ningbo: IEEE, 2023.
[111] ZHANG X, WANG Z H, ZHOU Z H, et al.Influence of Magnetic Field on Corrosion Behavior of Pure Aluminum in 3.5 WT.% NaCl Solution[J]. International Journal of Electrochemical Science, 2020, 15(6): 5385-5394.
[112] DAI N W, CHEN Q M, ZHANG J X, et al.The Corrosion Behavior of Steel Exposed to a DC Electric Field in the Simulated Wet-Dry Cyclic Environment[J]. Materials Chemistry and Physics, 2017, 192: 190-197.
[113] HUANG H L, TIAN J, ZHANG G A.Atmospheric Corrosion Behavior of Tin under an Alternating Current Electric Field[J]. Journal of Electronic Materials, 2017, 46(7): 4359-4372.
[114] FANG X T, LIU B, XU H, et al.Research on Evaluation Method of Ship Equipment Environmental Adaptability[C]//2018 Prognostics and System Health Management Conference (PHM-Chongqing). Chongqing: IEEE, 2018.
[115] 袁大天, 于芳芳, 李太平. 直升机航电系统高原高寒环境适应性评估[J]. 装备环境工程, 2019, 16(10): 76-80.
YUAN D T, YU F F, LI T P.Evaluation of Plateau and Alpine Environment Adaptability of Helicopter Avionics System[J]. Equipment Environmental Engineering, 2019, 16(10): 76-80.
[116] 武月琴, 傅耘, 敖亮. 典型环境条件下装备环境适应性的评估方法[J]. 装备环境工程, 2010, 7(6): 109-112.
WU Y Q, FU Y, AO L.Equipment Environmental Worthiness Evaluation Method in Representative Environmental Condition[J]. Equipment Environmental Engineering, 2010, 7(6): 109-112.
[117] 杨阳, 赵徐成, 刘章龙, 等. 基于灰色模糊理论的飞行保障装备高原环境适应性评估[J]. 装甲兵工程学院学报, 2016(4): 30-34.
YANG Y, ZHAO X C, LIU Z L, et al.Plateau Environment Adaptability Evaluation of Flight Support Equipment Based on Grey-Fuzzy Theory[J]. Journal of Academy of Armored Force Engineering, 2016(4): 30-34.
[118] AYELLO F, JAIN S, SRIDHAR N, et al.Quantitive Assessment of Corrosion Probability—A Bayesian Network Approach[J]. Corrosion, 2014, 70(11): 1128-1147.
[119] CHEN H, WANG J J, LIU Y R, et al.Rearch on Quantitative Evaluation Technology of Equipment Battlefield Environment Adaptability[C]//Proceedings of the 3rd International Conference on Advanced Information Science and System. Sanya: ACM, 2021.
[120] 李曙林, 杨森, 孙冬. 军用飞机环境适应性评价模型[J]. 航空学报, 2009, 30(6): 1053-1057.
LI S L, YANG S, SUN D.Evaluation Model of Environmental Worthiness for Military Aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(6): 1053-1057.
[121] 张礼学, 王中伟. 平流层飞艇环境适应性评价模型[J]. 航空学报, 2013, 34(4): 719-726.
ZHANG L X, WANG Z W.Environmental Adaptability Evaluation Model for Stratospheric Airships[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(4): 719-726.
[122] CHEN C, ZHANG X R, WANG G, et al.A Hybrid Multi- Criteria Decision-Making Framework for Ship-Equipment Suitability Evaluation Using Improved ISM, AHP, and Fuzzy TOPSIS Methods[J]. Journal of Marine Science and Engineering, 2023, 11(3): 607.
[123] 荣辉, 王满喜. 通信装备复杂电磁环境适应性试验评估技术[J]. 航天电子对抗, 2017, 33(1): 46-47.
RONG H, WANG M X.Test and Evaluation Technology of Complex Electromagnetic Environment Adaptability for Communication Equipment[J]. Aerospace Electronic Warfare, 2017, 33(1): 46-47.
[124] 赵禄达, 王迪, 胡以华, 等. 基于改进模糊AHP法的海上装备受复杂电磁环境影响评估[J]. 电光与控制, 2024, 31(7): 97-103.
ZHAO L D, WANG D, HU Y H, et al.Improved Fuzzy- AHP Method Based Evaluation of Impact of Complex Electromagnetic Environment on Naval Equipment[J]. Electronics Optics & Control, 2024, 31(7): 97-103.
[125] HU Y, DING W R, LIU C L.Assessment and Prediction of Complex Electromagnetic Environment Based on Bayesian Network[C]//Proceedings of 2017 IEEE International Conference on Unmanned Systems (ICUS). Beijing: IEEE, 2017.
[126] CAI M J, LIANG Y X, JIANG T.EM Environment Adaptability Analysis of Airborne Radar Based on Complex Network Theory[C]//Proceedings of 2022 Asia-Pacific International Symposium on Electromagnetic Compatibility (APEMC). Beijing: IEEE, 2022.
[127] 刘丹, 魏嘉利. 基于D-S证据理论的机载数字通信设备电磁环境适应性评估[J]. 航空科学技术, 2018, 29(1): 26-31.
LIU D, WEI J L.Adaptive Evaluation of Electromagnetic Environment for Airborne Digital Communication Equipment Based on D-S Evidence Theory[J]. Aeronautical Science & Technology, 2018, 29(1): 26-31.
[128] HAGER C E.On Applying the Electromagnetic Probability-of-Effect Assessment Tool to Hazards of Electromagnetic Radiation to Ordnance[C]//2023 IEEE Symposium on Electromagnetic Compatibility & Signal/Power Integrity (EMC+SIPI). Grand Rapids: IEEE, 2023.
[129] ZHOU P, LV Y H, CHEN Z H, et al.System-Level EMC Assessment for Military Vehicular Communication Systems Based on a Modified Four-Level Assessment Model[J]. China Communications, 2018, 15(8): 39-53.
[130] FANG X X, ZHU Z Y, CAO Q S.Analysis of Radar Electromagnetic Compatibility by Multi-Coupling Paths and Assessment Methodology[J]. International Journal of Electronics, 2018, 105(2): 230-243.
[131] CHEN Y H, LI K J, WANG Z Y, et al.Vulnerability Assessment Method for Electronic Devices Excited by Transient Electromagnetic Disturbances[J]. IEEE Electromagnetic Compatibility Magazine, 2022, 11(4): 94-99.
[132] WANG Y L, YANG B.FTA-Based Assessment Methodology for Adaptability of System under Electromagnetic Environment[C]//2010 International Conference on Computer, Mechatronics, Control and Electronic Engineering. Changchun: IEEE, 2010.
[133] KHARRAT M, ABDELJABBAR N, PENAS O, et al.EMC Risk Assessment Process through a Topological Analysis[C]//2018 12th France-Japan and 10th Europe- Asia Congress on Mechatronics. Tsu: IEEE, 2018.
[134] LI M, WEN Y H, ZHANG J B, et al.An EMC Safety Assessment Model to Analyze Complex System in High Speed Railways[C]//2017 International Conference on Electromagnetics in Advanced Applications (ICEAA). Verona: IEEE, 2017.
[135] ZHANG S J, SU D L, WANG J, et al. Complexity Evaluation Method of Electromagnetic Environment Oriented to Communication Equipment Based on Statistic Theory[J]. Applied Mechanics and Materials, 2014, 568/569/570: 1331-1335.
[136] ZHU H D, ZHU Y Z, DENG X P, et al.Risk Assessment of Electromagnetic Compatibility Failure for Electronic Instrument Transformers under Extreme Electromagnetic Transients[C]//2024 5th International Conference on Clean Energy and Electric Power Engineering (ICCEPE). Yangzhou: IEEE, 2024.
[137] ALAMRI A H.Application of Machine Learning to Stress Corrosion Cracking Risk Assessment[J]. Egyptian Journal of Petroleum, 2022, 31(4): 11-21.
[138] DRAL P O, ANATOLE VON LILIENFELD O, THIEL W. Machine Learning of Parameters for Accurate Semiempirical Quantum Chemical Calculations[J]. Journal of Chemical Theory and Computation, 2015, 11(5): 2120-2125.
[139] 徐廷学, 杨继坤, 韩朝, 等. 基于BP神经网络的导弹环境适应性评估及对策[J]. 装备环境工程, 2012, 9(3): 86-89.
XU T X, YANG J K, HAN Z, et al.Evaluation of Missile Environmental Worthiness and Countermeasure Based on BP Neural Network[J]. Equipment Environmental Engineering, 2012, 9(3): 86-89.
[140] ZHANG X L, CHEN Y Z, ZHAO M, et al.Assessment of EMI Effects on UAV Data Links[J]. IEEE Transactions on Electromagnetic Compatibility, 2025, 67(3): 786-799.
[141] ANDRIOAIA D A, GAITAN V G.Finding Fault Types of BLDC Motors within UAVs Using Machine Learning Techniques[J]. Heliyon, 2024, 10(9): e30251.
[142] LAI J P, LIN Y L, LIN H C, et al.RLC Circuit Forecast in Analog IC Packaging and Testing by Machine Learning Techniques[J]. Micromachines, 2022, 13(8): 1305.
[143] HU W L, ZHANG M B, PENG C, et al.An Electromagnetic Environment Situation Assessment and Abnormal Detection Technology[C]//2021 7th International Conference on Computer and Communications (ICCC). Chengdu: IEEE, 2021.
[144] OWLIA E, MIRJALILI S A.Simulation of the Electromagnetic Weft Insertion System by Adaptive Neuro Fuzzy Interface System[J]. The Journal of the Textile Institute, 2021, 112(9): 1359-1366.

Funding

装备科研项目(HJ2022B020504)
PDF(719 KB)

Accesses

Citation

Detail

Sections
Recommended

/